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The horizontal, linearly stratified, non-diffusive, high Reynolds number flow of 
an unbounded fluid over a two-dimensional vertical barrier is studied for a range 
of internal Froude numbers (Pi) under the Oseen and Boussinesq approximations. 
For F! > 0.47 the most prominent feature of the flow is the system of large 
amplitude lee waves located downstream of the barrier with crests tilted in the 
upstream direction. For 0.47 < F; < 0.6 the crests actually extend upstream of 
the barrier and appear as flows of alternating direction over the barrier. For 
0.47 c Pi < 0-5 reversed flows due to these waves actually extend far upstream. 
For 3’ < 0.47 a blocking column upstream of the obstacle, as well as large ampli- 
tude lee waves, is present. For even smaller 3. the amplitude of the lee-wave 
system diminishes but the blocking column remains. It is also shown that the 
steady-state solution obtained by Trustrum (1964, 1971) for the density and 
pressure field is drastically altered if a small viscosity is retained in the transient 
analysis. 

1. Introduction 
Stably stratified flows over obstacles are of some geophysical interest. High 

Reynolds number flows, i.e. inviscid flows, have been studied analytically in 
several manners, The first approach is based upon the use of Long’s (1953) 
equation, the nonlinear vorticity equation integrated along streamlines. If the 
upstream flow is assumed to be linearly stratified with p U 2  = constant, Long’s 
equation becomes linear. Owing to this fact and to the relative ease with which 
these conditions are (almost) achieved in the laboratory and observed in nature, 
this linear equation has been used extensively to study inviscid stratified flows 
over obstacles in channels. 

However, at  low internal Proude numbers, disturbances can propagate far 
upstream, thus negating the assumption of (almost) uniform flow there which 
is required in Long’s linear model. For example, Bretherton (1967) considered 
an initial-value problem for two-dimensional flow over a cylinder in an unbounded 
stratified flow for Fi = 0. He found blocking columns both upstream and down- 
stream of the cylinder with horizontal flow above and below the cylinder. 

Miles (1971) has shown, starting with Long’s equation, that reversed flow 
upstream of a vertical barrier in a half-space first occurs (at x = y = 0) when 
l$ is lowered to 1/2.05. For a further discussion see 5 5. 

Trustrum (1971) considered the inviscid flow past a barrier in a channel of 
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finite height using the Oseen and Boussinesq approximations. The general form 
of her steady-state solution was obtained in an earlier paper (Trustrum 1964) 
from an inviscid transient analysis. We note here that the general solut,ion which 
we obtain in this paper from a steady slightly viscous analysis differs in form 
from Trustrum's solution. 

Inanearlierpaper, the author (1968,1971) considered thelow Reynoldsnumber 
stratified flow past a vertical barrier in an unbounded region and found a blocking 
column upstream of the cylinder, uniform flow downstream of the barrier, and 
a vertical shear layer engulfing the plate. 

The purpose of this work is to  obtain the overall picture of the high Reynolds 
number, non-diffusive, stratified flow over a vertical barrier in an unbounded 
region over the range of Pi of general interest. The Oseen model will be adopted. 
Since reversed flows will occur for some Fi, Long's equation could not be used 
and the theoretical alternative to the Oseen model is to solve the full Navier- 
Stokes equations in an unbounded region. Solutions for the stream function will 
be obtained upstream and downstream of the barrier and matched appropriately 
across the plane of the barrier. 

2. Formulation of the problem 
A vertical barrier of height 2b moves horizontally with speed U through an 

initially limarly stratified (p' = po( 1 -Px' ) )  non-diffusive fluid. The flow as 
viewed from the frame of reference of the barrier is steady and the disturbance 
t o  uniform flow is limited by viscosity to some finite (though large) region of 
spacc, see figu~e 1. 

The dimensional governing equations under the Boussinesq approximation for 
steady, two-dimensional, non-diffusive flow are as follows: 

p0(vr. v') ut = - api/axl +pvrw, ( 1 4  

p0(vr. vr) wr = - aprlaxr -pig +pvr2wi,  ( I b )  

aurpxr + awr/azi = 0, ( I c )  

O r  U? = -a$'/azr, W I  = aplax '  ( 14  

and p' = p ' (P) .  (14 
Far upstream, where viscosity has eliminated the disturbance to uniform flow, - 

i,k' --f - Uz' and p' --f po( 1 - px'). Hence, 

We obtain the vorticity equation by cross-differentiation of (1 a)  and (1 b) .  We 
then non-dimensionalize velocities by U ,  distances by b and the stream function 
by Ub. We obtain 

where Fi = Uz//3gb2 and Re = Ub/v. We model the convective operator with 
the Oseen operator, i.e. we replace (v. V) by a/ax. We also write 

( ~ . c ) v z ~ + ( i / P 5 ) a ~ / a x -  (I/Re)V4iJ = 0, (3) 

- 
1c. = - x + 1 c . ,  (4) 
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FIGURE 1. Geometry of the flow field. 

and obtain 
a 1 a$ 1 

-(VZ$)+-----V4$ = 0. 
ax -8’; ax Re ( 5 )  

The solutions we obtain to (5) show regions of reversed flow. We must then 
ask how these solutions are related to the solutions of (3). We cannot answer 
this question directly. The best we could do is, using the solutions we shall obtain, 
compute (v.  V) Vz$ and compare this with a(Vz$)/ax. The computation would 
show that at some points along any streamline the nonlinear operator exceeds 
the linear operator in magnitude and a t  other points the reverse is true. Hence, 
the overall effect on the streamline pattern is not clear. The best we can hope 
for is that  the solutions to (5) qualitatively model the solutions to  (3). However, 
the analyticaI alternative to the Oseen approach is the numerical solution of (3) 
for an infinite domain, a task considerably more difficult than that undertaken 
here. We now adopt equation (5) as our model and determine what it tells us. 
We shall solve this equation for z >, 0,  since the flow is symmetric with respect 
to the x axis. 

The boundary conditions imposed upon $ are as follows: 

$ + O  as ~x,z(+co; (6a )  

$ = Z, a$/ax = 0 a t  x = 0 for z 6 1; 6% c )  

II., a’ G’ -@ ”’ continuous a t  x = 0 for z > 1. 

We shall solve (5) subject to (6) for Re + co for a range of Pi. 

3. Method of solution 
To solve the problem we shall proceed as follows. We first obtain the general 

solution to (5) in terms of the Fourier sine transforms of $ ( O , x )  (P(k))  and 
a$r(O, z )  ax (G(k ) ) .  The requircment that az$/8xz and a3@/ax3 be continuous across 
x = 0 for z > 1 will lead to two coupled integral equations relating P ( k )  and G ( k )  
for z > 1. P(k) and G(k)  will then be obtained from these equations in terms of the 
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Fourier sine transforms of two functions of z, Rl(z) and R2(z), which are identically 
zero for z > 1 .  Conditions (66) and (6c) then lead to integral equations for the 
Fourier sine transforms of R,(z) (Rl(k))  and R&) (R,(k)) on 0 < z < 1. These 
equations are finally solved approximately through the use of Fourier sine series 
o n O < z <  I. 

Let us then begin by defining the Fourier sine transforms of the upstream and 
downstream solutions for $, H,(k, x) and H,(k, x) respectively. For x < 0, z 2 0 

If we substitute these equations into (5), and then satisfy the requirement that 
$ and a$/ax be continuous across x = 0, we find 

The a,(lC) are the four roots of 

0 = ai(a; - k2)  + (1/F:) a, - ( l /Re)  (at - k2)2 (SC) 

The roots a, and a2 are complex conjugates for 0 < kFi < 1 and have negative 
real parts for all k which increase in magnitude monotonically with k. The roots 
a3 and a4 are real and positive and increase monotonically with k. 

Furthermore, for kFi < 1 ,  the real parts of al, az and a3 go to zero as Re -+ co. 
For kF, > 1 ,  a, goes to zero (for any fixed k )  as Re -+ co. For Re -+ of) for fixed k, 
the roots are as follows. For 0 < kF, < 1 

a1,2 = +-i(d-kZ)*, a3 = 0,  a4 = Re. (9% b, c,  d)  

al = 0,  a2,3 = T ( k 2 - a 2 ) ) ,  a4 = Re, (9e,f,s,h) 
For kFi > I, 

where CI = l/Fi. We note that a4 represents a boundary layer of thickness Re-1 
just upstream of the plate. For Re finite but large, and for 

0 < k& < l - - ( q R e ) + ,  

1 (kFi)4 
a4 = Pgz (1 - (kB!Ji) 

From ( l o ) ,  we can conclude that the upstream disturbance will decay at dis- 
tances of order F; Re. 

The general solution of ( 8 b )  differs from Trustrum's (1971) in one important 
aspect. In  her downstream solution, for 0 < kFi < 1, she has a component in- 
dependent of x, while our downstream solution is oscillatory in x for 0 < k& < 1. 

To satisfy the requirement that a2$/ax2 and a3$/ax3 be continuous across 
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x = 0, we substitute (8) info (7), differentiate with respect to x, and find that for 
z > l  

lom [( - a3ap + &,a2) F(k)  + (a3 + a4 - a1 - a2) G(k)] sin kz dk = 0, (1 1) 

lom [ - a3a4(a3 + ad) P(k)  + (a2+a3a4+ af - a;- ala2 - ag) G(k)]sin b d k  = 0. (12) 

We use the roots given in (9) in the above equations to obtain som (Re[ - a,P + G ]  + [a1a2B' + (a3 - a, -a2) GI} sin kz dk = 0, (13) 

lom (Re2[ - a3F + GI +Re[ - a$P + a3G] + [(a: - a2, - a% - a1a2) GI) 

x sin kxdk = 0. (14) 
We now expand P(E) and G(lc) as follows: 

Re-n 

Upon substituting these expansions into (13) and (14) and equating the co- 
efficients of Re1 in (13) and Re2 in (14), we obtain for z > 1 

~ o m [ - ~ 3 $ , + G o ] s i ~ k ~ d k  = 0. 

Equating the coescients of Re0 in (13), we obtain for z > 1 

~om[-a3Fl+G,]sinkzdk = - [a,a2F0+ (a3-a,-a,)G0]sinkzdk. (18) 

By equating the coefficients of Re1 in (14), we obtain for z > 1 

Equations (18) and (19) then imply that 

1; [(a, a2 + at) Fo - (a, + a2) Go] sin kz dk = 0. (20) 

Equations (17) and (20) are two coupled integral equations for F ( k )  and G(k) 
for z > 1.  Using the roots given in (9), the requirement that the disturbance 
decays as z --f co, and dropping the zero subscripts, we obtain for z > 1 

(5)"Jr [G-a,P]sinkzdk = 0, ( 2 1 4  

where a = Equations (6 b, C) imply that for z < 1 



380 G. 8. Janowitz 

The solution of equations (21) constitutes the crux of our problem. The difficulty 
lies in (21 a, b ) ,  which we now rewrite for all z as follows: (:r [ 0 [G- a3P] sin kxdk = 2R,(x), (21 a') 

siiikzdk = 2R,(z), (21b') 
G 

(k2-az)4 
(%)'Jr [ 1 - 2 U (  k - .)]a sin kz dk - (:)'I: - 
where R,(z) and R,(z) are, thus far, arbitrary functions ofxwhichvanishidentically 
for z > I. 

We define the Fourier sine transforms of R,(z) and R,(z) as follows: 

(22a,b)  
2.E- 1 

R1,dk) = (;) jo R,,z(Wnkzdz* 

We may therefore solve for F (k )  and G ( k )  in terms of R,(k) and B,(k) since (21) 
holds for all 2. We find for L < a 

G(L) = 2R1(k), F(k)  = 2R,(k) (23% b )  

G(k) = R,(k) - (k2  - a')+ R,(k), (234  

P(k)  = - R,(k) - R1(k)/(kZ - a,)+. ( 2 3 4  

and for k > a 

Substituting this into (8) with x = 0, we find for x < 1 

R, sin kx dk 
- R,(z) + 3 R,(k) sin kzdk - 

0 

R,(x)+(--) 2 +  s" R,(k)sinkzdk- (k2-a2)8R2sinkzdk = 0. (24b) 
0 

Substituting (23) into (8) we find for x < 0 

and for x 3 0 

$(x, 2) = - 2R,(z) + 2 (:Its a R, sin kz dL + 2 (E)'sI [x. cos [( a2 - k2)3 X] 
0 

The functions R,(k) and R,(k) still remain to be determined. We first write 

m 

R,,,(z) = C ~ , ~ , , ~ s i n n n x .  (2% b )  
n = l  

Equations ( 2 2 )  then imply that 
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We substitute (26) into (24) and multiply through by sinmm and then integrate 
with respect to x from zero to one. This leads to the following set of equations for 
m =  1 , 2 , 3  ,.... 

where 

2 sin2 k dk 
(nT) (mT)/i (k2- (n7.r)2) (kz - ( ~ 7 . r ) ~ )  ' Jm, = - (- l )m+n 

T 

2 ( k 2  - a2)i sin2 lc dk 
Kffln=-(- l )%+" 

m 

To solve (27), we truncate after M terms, i.e. we assume that ylm, r2m = 0 for 
m > M and solve (27a, b )  for m = 1,2,  ..., M .  We then substitute into (24) to 
check the accuracy of our truncation.. The integrals that  we required were com- 
puted using Simpson's rule with varying step size on a Univac 1108. We note 
that, since for large k (where neglected viscous effects come into play) G -+ sin klk, 
the vertical velocity becomes unbounded as In (1 - z )  as x -+ 1-. Furthermore, 
since we are approximating z ,  R, and R2 by finite sine series ( 6 b ,  c) cannot be 
satisfied for z + 1-. Hence, there will be some error in the neighbourhood of 
x 5 1 on the downstream side of the barrier, but this does not prevent us from 
obtaining good results elsewhere. 

4. Numerical results 
For the cases considered, we generally chose M = 15 or 18. This led to error 

in ( 6 b ) ,  oscillatory in z of order 2 or 3 %  for z < 1, well in keeping with the 
qualitative description afforded, at best, by the Oseen approximation. The errors 
in Qh(0, z)/az, 0 < x < 1 are of order 0-1 and are again oscillatory in z. This leads 
to  some error in the immediate vicinity of the body, but small errors elsewhere. 

In, figures 2 (a)-(g), we plot the streamline pattern and the far-upstream velocity 
profile 

for a number of values of 4 ranging from 4 = 1.0 (a = 1-0) down to  Fi = 0.285 
(a = 3.5). We shall discuss our results by comparing wake regions, lee-wave 
patterns and blocking columns. 

First we shall discuss the wake region,!i.e. z > 0 and 0 < x < 1. For a = 1.0, 
the flow is in the downstream direction with speeds about half the free-stream 
value, For a = 1.7 a separated bubble has formed. For a = 2.0, 2.1 and 2.5, 
the entire wake has separated and for a = 2.5 has become attached to the up- 
stream blocking column. For a = 3-0 and 3.5, the wake consists of a series of 
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FIGURES 2 (a), ( b )  and (G). For legend see page 384. 
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FIGURE 2 .  Streaniline pattern for (a)  Fz = 1.00 (a  = 1.0), (b )  PZ = 0.588) (a  = 1.7) ,  
( c )  B’, = 0.500 (a = 2.0), (d )  Pi = 0.476 (a  = 2.1), (e) Pa = 0.400 (a  = 2.5), (f) FZ = 0.333 
(a  = 3.0) and (9)  Fz = 0-285 (a = 3-5). 

cells of closed streamlines with some downstream mass transfer occurring near 
the x axis. The amount of mass transfer diminishes as a increases from 3.0 to 3-5. 

We now discuss the lee-wave pattern. The amplitude of tho lee waves reaches 
a maximum for a between 2.0 and 2.5. The crest lines of the waves tilt t o  the 
left, becoming horizontal over the barrier and giving group velocities in the 
upstream direction, as expected. The flow on the ‘upstream’ face of the lee 
wave is in the upstream direction over the obstacle causing the flow there to 
appear as reversed jets. Further the flow appears to be blocked by the lee waves 
on the upstream side with negative velocities occurring far upstream of the 
wave for a = 2.0, 2.1 and 2.5.  We may interpret the 3 = -2 .7  streamline for 
a = 2.1 as a lee wave which has ‘broken’ in the upstream direction. The blocking 
caused by the lee waves tends t o  increase the upstream velocity at  x = 0 for 
a = 1.7,  2.0 and 2.1 before the blocking column upstream of the obstacle is 
established. 

A blocking column becomes established for some value of a between 2-1 and 
2-5 .  No calculations were performed in this range as convergence quite unex- 
pectedly and suddenly becomes extremely slow in this range. As a increases 
above 2.5 the blocking column upstream of the obstacle remains, with the lee 
waves diminishing in magnitude. 

5. Discussion and comparison with earlier research 
We may now consider the role of viscosity in determining our solution and 

then proceed to compare our solution with previous work. 
We first note that use of a large but finite Reynolds number shows that the 

wavelike solution is a downstream solution, that a3 = 0 for k < a and that a, = 0 
for 12 > a. Second, and most important, the inclusion of viscous forces requires 
that the no-slip condition be satisfied on the plate. This implies that y? and 
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afilax are continuous across x = 0 for all x and leads directly to the matching 
relations of (17) and (20), with no further assumptions required. This then 
eliminates the need for any ad ?LOG assumptions. The aq solution primarily acts 
to make the vertical velocity zero at  the plate. Equation (17)  implies that this 
boundary layer vanishes to lowest order for z > 1. 

Third, a large but finite value for Re causes the perturbation to uniform flow 
to vanish far upstream which implies that reversed flows either form closed cells 
or S-shaped streamlines. Within closed cells the relation between p and @ is 
indeterminate and the flow may be unstable. The flow along the upstream leg 
of the S-shaped streamlines is also unstable and local breakdown to turbulence 
may occur. Since the flow is statically stable outside these regions, the effects 
of breakdown may be localized. 

Another question remains to be answered. After all this viscous analysis, have 
we not really just generated a solution to a linearized form of Long’s equation? 
We can show that this is not the case as follows. Dropping the viscous term in (5) 
and integrating with respect to x, under the assumption that @ vanishes far 
upstream, leads to the equation V2@+a2@ = 0. Solutions to this equation 
satisfying @ = x on the plate can be obtained, see Miles (1968). Upon substituting 
our solution into this equation we can see that it does not satisfy the equation 
and hence our solution is a solution of the vorticity equation ( 5 )  but not of Long’s 
equation. We return to this point later. 

We now show that the solution obtained by Trustrum (1964, 1971) for the 
density and pressure field is drastically altered if a small viscosity is retained 
in the transient analysis. We shall merely sketch the procedure for an unbounded 
flow, since the analysis is quite similar to that of Trustrum. An initially uniform, 
linearly stratified flow is disturbed at t = 0 by a disturbance on the plane z = 0. 
We first replace (1 e )  by 

where the density perturbation has been non-dimensionalized with respect to 
po/3b and time with respect t o  b/U. The appropriate transient terms are also 
added to (I a, b) .  We then take the Laplace transform of the resulting transient 
equations and, following Trustrum, seek solutions of the form 

where s is the Laplace transform variable (Res =- 0). Equation (28) leads to 

a 
R(k,s)  = - @ ( k , s ) .  

s + a  

If a(k ,  0) does not vanish, then, in the steady state, (30) implies that 

P ( X , Z )  = $(x,4. 
25 FLM 58 
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The transient analogue of (8c) leads to an algebraic equation for a(k,  s). With 
Re-l= 0 in that equation, Trustrum finds two solutions for a which go to zero 
with s. First, for small s, a = a- = - Fi ks/(  1 +Pi k). For this downstream solution 
p-(k, z )  = - Fi k$-(k, 0) sin kx. This is the additional downstream solution, men- 
tioned earlier, obtained by Trustrum and is associated with the coefficients B, 
in the latter paper. For Re-1+ 0 and s < Ic4/Re the transient equation shows that 

a- r - s + s F ~ ~ ( s R e / k ~ ) .  

This implies that for small s - 
k4Fz $-(k, s )  
Re  s p- (k , s )  = -2-. 

For the density perturbation to remain finite in the steady state $-(k, 0) = 0. 
This additional downstream solution corresponds to an arbitrary p-(x) and p-(x) 
with no associated velocity field in the steady state. Thus B, should be set equal 
to zero in equation (2.2) of Trustrum (1971). With Re-l = 0,  the second solution 
for a which goes to zero with s is, for small s, a+ = e k s / ( l  -Fik).  The corre- 
sponding density field has p+(k, z )  = Ft k$+(k, 0) sin kz. This is an upstream solu- 
tion for kFi < 1, and a downstream solution for IcFi > 1. We can identify this 
root with our a3 for k& < 1 and with a1 for kPf > 1 if Re-l= 0. However, if 
Re-l+ 0, we recall that a3 (kFi < 1) and a1 (kFi > 1) are of O(I2e-l). If Re-1 + 0, 
the transient equation for a, shows that for small s 

where g ( k )  > 0. This solution, therefore, does not vanish with s which implies that 
for this solution p+(k, x )  = $+(k, 0) sin Icz (p+(z) = @+(z)) .  Thus, the relation be- 
tween the density (or pressure) field and the stream function is drastically altered 
if Re-l+ 0. In  equations (2.3) and (2.4) of Trustrum (1971) we shouId replace 
Cn with (k/n)C,. Since the matching conditions were partially formulated in 
terms of the density and pressure fields, the numerical results of that paper are 
questionable. We have now shown that for all but the B, solution the density 
perturbation equals the stream function perturbation. Requiring that the total 
stream function and density be continuous above the plate implies that p-(z) = 0 
for x > 1. Thus the additional B, solution is apparently only necessary if some 
condition on the density field is specified on the plate which is inconsistent with 
p = $. Thus, case B considered by Trustrum, with C, -+ (k /n)Cn,  is analogous 
to the problem considered here, and the matching conditions can also be shown 
to be analogous. 

The second study we shall consider is that of Miles (1968, 1971). As a part of 
the earlier paper, Miles considers stratified flow over a vertical barrier in a half- 
space. Using Long's equation with the displacement function as the dependent 
variable, he first transforms from rectangular to elliptic co-ordinates and then 
obtains the solution in terms of a series of products of Mathieu functions, He 
then computes the drag coefficient of the barrier, and notes that reversed flow 
occurs in the lee-wave field for a 2 1.73, which possibly limits the appIicability 
of Long's equation. He does not compute sheamline patterns for various a. 
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Our calculations show some slight reversed flow in the lee-wave field. In  his 
latter paper, Miles notes that reversed flow at the upstream stagnation point 
(0-,0) occurs for a 2.05, while we concluded that this occws for LX 2 2-10. 
We note that our calculations show upstream reversed flow ‘induced’ by the 
lee-wave field, near z = 2 ,  for a > 2.0. Since Miles has calculated no streamline 
pattern we cannot make any further comparisons. As we have shown, our solution 
is not a solution of Long’s equation but may be regarded as an alternative to 
Miles’ solutions. The reason for this is as follows. Miles solution to  Long’s equation 
follows directly from the integration of the vorticity equation along streamlines 
with the function of integration evaluated far upstream under the assumption of 
undisturbed flow in that region. The inviscid limit of our solutionreflects, although 
in linearized form, the integration of the vorticity equation along streamlines 
with the function of integration evaluated in the plane of the plate and de- 
termined by boundary and matching conditions applied there. This procedure is 
more reasonable on physical grounds since the presence of the plate does de- 
termine the nature of the disturbance. Further, there is no theoretical reason 
for the functions of integration to coincide. Our results, however, do show that 
for a 6 1.7 there is relatively little upstream disturbance, and so there should be 
reasonable agreement between Miles’s results and those obtained here. 

6. Conclusions 
We have obtained the predictions of the Oseen model for a range of internal 

Froude numbers and have noted that, at best, they might yield a qualitative 
picture of the actual flow field. 

We note that an analogy exists, under certain conditions, between two- 
dimensional stratified flows and the horizontd flow of a homogeneous fluid over 
a flat bottom in the ‘beta plane’, see Martin (1966). The analogy with the 
solutions obtained here is as follows. An eastwards homogeneous current of speed 
U flows over a flat bottom towards a narrow trench or ridge of width 2b running 
in the north-south direction. The rapid change of depth would tend to cause the 
current to flow around rather than across the trench. The trench then is the 
analogue of the plate with a2 E b2U-ldf,Idy. Our solutions might then apply to 
an oceanic problem. 

The author acknowledges the support of the National Science Foundation 
under grant GA 31889 during the period in which this research was carried out. 
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